Extensional Confluences and Local Closure Operators

نویسنده

  • Henry Soldano
چکیده

This work is motivated by knowledge discovery in attributed graphs. Our approach consists in extending the methodology of frequent closed pattern mining, as developed in Formal Concept Analysis (FCA), to the case where the objects in which attribute patterns may occur are the vertices of a graph, typically representing a social network. For that purpose we extend the framework of abstract concept lattices, in which the extensional space is a pointed joinsubsemilattice of the powerset X of the object set, by considering as the extensional space a weaker structure called a confluence of X . Confluences were recently investigated as intensional spaces in FCA. In this article we show that when the intensional space is a lattice L and the extensional space is a confluence F of X , that leads to a set of closure operators, called local closure operators, whose union form the set of intensions of F . We investigate the structure of the set of (extension,intension) pairs, i.e. the set of local concepts built on (L,F ) and related local implications. As an example, we consider the detection of all frequent k-communities in an attributed network. This article is part of the proceedings of ICFCA 2015 conference published by springer and is available at http://link.springer.com/chapter/10.1007% 2F978-3-319-19545-2_8

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POWERSET OPERATORS OF EXTENSIONAL FUZZY SETS

Powerset structures of extensional fuzzy sets in sets with similarity relations are investigated. It is proved that extensional fuzzy sets have powerset structures which are powerset theories in the category of sets with similarity relations, and some of these powerset theories are defined also by algebraic theories (monads). Between Zadeh's fuzzy powerset theory and the classical powerset theo...

متن کامل

M-FUZZIFYING MATROIDS INDUCED BY M-FUZZIFYING CLOSURE OPERATORS

In this paper, the notion of closure operators of matroids  is generalized to fuzzy setting  which is called $M$-fuzzifying closure operators, and some properties of $M$-fuzzifying closure operators are discussed. The $M$-fuzzifying matroid induced by an $M$-fuzzifying closure operator can induce an $M$-fuzzifying closure operator. Finally, the characterizations of $M$-fuzzifying acyclic matroi...

متن کامل

CHARACTERIZATION OF L-FUZZIFYING MATROIDS BY L-FUZZIFYING CLOSURE OPERATORS

An L-fuzzifying matroid is a pair (E, I), where I is a map from2E to L satisfying three axioms. In this paper, the notion of closure operatorsin matroid theory is generalized to an L-fuzzy setting and called L-fuzzifyingclosure operators. It is proved that there exists a one-to-one correspondencebetween L-fuzzifying matroids and their L-fuzzifying closure operators.

متن کامل

The operators over the GIFS

In this paper, newly defined level operators and modal-like operators over extensional generalized intuitionistic fuzzy sets (GIFSB) are proposed. Some of the basic properties of the new operators are discussed.

متن کامل

Closed Patterns and Abstraction Beyond Lattices

Recently pattern mining has investigated closure operators in families of subsets of an attribute set that are not lattices. In particular, various authors have investigated closure operators starting from a context, in the Formal Concept Analysis (FCA) sense, in which objects are described as usual according to their relation to attributes, and in which a closed element is a maximal element of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015